Copied to
clipboard

G = C2×C72⋊C4order 392 = 23·72

Direct product of C2 and C72⋊C4

direct product, metabelian, soluble, monomial, A-group

Aliases: C2×C72⋊C4, (C7×C14)⋊C4, C7⋊D72C4, C721(C2×C4), C7⋊D7.3C22, (C2×C7⋊D7).2C2, SmallGroup(392,40)

Series: Derived Chief Lower central Upper central

C1C72 — C2×C72⋊C4
C1C72C7⋊D7C72⋊C4 — C2×C72⋊C4
C72 — C2×C72⋊C4
C1C2

Generators and relations for C2×C72⋊C4
 G = < a,b,c,d | a2=b7=c7=d4=1, ab=ba, ac=ca, ad=da, bc=cb, dbd-1=b3c-1, dcd-1=b3c4 >

49C2
49C2
2C7
2C7
2C7
2C7
49C4
49C4
49C22
2C14
2C14
2C14
2C14
14D7
14D7
14D7
14D7
14D7
14D7
14D7
14D7
49C2×C4
14D14
14D14
14D14
14D14

Permutation representations of C2×C72⋊C4
On 28 points - transitive group 28T48
Generators in S28
(1 8)(2 10)(3 11)(4 12)(5 13)(6 14)(7 9)(15 28)(16 22)(17 23)(18 24)(19 25)(20 26)(21 27)
(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)
(1 4 7 5 10 6 3)(2 14 11 8 12 9 13)(15 18 21 17 20 16 19)(22 25 28 24 27 23 26)
(1 28 7 26)(2 18 14 17)(3 22 5 25)(4 27)(6 23 10 24)(8 15 9 20)(11 16 13 19)(12 21)

G:=sub<Sym(28)| (1,8)(2,10)(3,11)(4,12)(5,13)(6,14)(7,9)(15,28)(16,22)(17,23)(18,24)(19,25)(20,26)(21,27), (15,16,17,18,19,20,21)(22,23,24,25,26,27,28), (1,4,7,5,10,6,3)(2,14,11,8,12,9,13)(15,18,21,17,20,16,19)(22,25,28,24,27,23,26), (1,28,7,26)(2,18,14,17)(3,22,5,25)(4,27)(6,23,10,24)(8,15,9,20)(11,16,13,19)(12,21)>;

G:=Group( (1,8)(2,10)(3,11)(4,12)(5,13)(6,14)(7,9)(15,28)(16,22)(17,23)(18,24)(19,25)(20,26)(21,27), (15,16,17,18,19,20,21)(22,23,24,25,26,27,28), (1,4,7,5,10,6,3)(2,14,11,8,12,9,13)(15,18,21,17,20,16,19)(22,25,28,24,27,23,26), (1,28,7,26)(2,18,14,17)(3,22,5,25)(4,27)(6,23,10,24)(8,15,9,20)(11,16,13,19)(12,21) );

G=PermutationGroup([[(1,8),(2,10),(3,11),(4,12),(5,13),(6,14),(7,9),(15,28),(16,22),(17,23),(18,24),(19,25),(20,26),(21,27)], [(15,16,17,18,19,20,21),(22,23,24,25,26,27,28)], [(1,4,7,5,10,6,3),(2,14,11,8,12,9,13),(15,18,21,17,20,16,19),(22,25,28,24,27,23,26)], [(1,28,7,26),(2,18,14,17),(3,22,5,25),(4,27),(6,23,10,24),(8,15,9,20),(11,16,13,19),(12,21)]])

G:=TransitiveGroup(28,48);

On 28 points - transitive group 28T49
Generators in S28
(1 8)(2 9)(3 10)(4 11)(5 12)(6 13)(7 14)(15 28)(16 22)(17 23)(18 24)(19 25)(20 26)(21 27)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)
(1 18 8 24)(2 15 14 27)(3 19 13 23)(4 16 12 26)(5 20 11 22)(6 17 10 25)(7 21 9 28)

G:=sub<Sym(28)| (1,8)(2,9)(3,10)(4,11)(5,12)(6,13)(7,14)(15,28)(16,22)(17,23)(18,24)(19,25)(20,26)(21,27), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14), (1,18,8,24)(2,15,14,27)(3,19,13,23)(4,16,12,26)(5,20,11,22)(6,17,10,25)(7,21,9,28)>;

G:=Group( (1,8)(2,9)(3,10)(4,11)(5,12)(6,13)(7,14)(15,28)(16,22)(17,23)(18,24)(19,25)(20,26)(21,27), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14), (1,18,8,24)(2,15,14,27)(3,19,13,23)(4,16,12,26)(5,20,11,22)(6,17,10,25)(7,21,9,28) );

G=PermutationGroup([[(1,8),(2,9),(3,10),(4,11),(5,12),(6,13),(7,14),(15,28),(16,22),(17,23),(18,24),(19,25),(20,26),(21,27)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14)], [(1,18,8,24),(2,15,14,27),(3,19,13,23),(4,16,12,26),(5,20,11,22),(6,17,10,25),(7,21,9,28)]])

G:=TransitiveGroup(28,49);

32 conjugacy classes

class 1 2A2B2C4A4B4C4D7A···7L14A···14L
order122244447···714···14
size114949494949494···44···4

32 irreducible representations

dim1111144
type+++++
imageC1C2C2C4C4C72⋊C4C2×C72⋊C4
kernelC2×C72⋊C4C72⋊C4C2×C7⋊D7C7⋊D7C7×C14C2C1
# reps121221212

Matrix representation of C2×C72⋊C4 in GL4(𝔽29) generated by

28000
02800
00280
00028
,
0100
28300
00826
00328
,
0100
28300
0010
0001
,
00280
00028
1000
32800
G:=sub<GL(4,GF(29))| [28,0,0,0,0,28,0,0,0,0,28,0,0,0,0,28],[0,28,0,0,1,3,0,0,0,0,8,3,0,0,26,28],[0,28,0,0,1,3,0,0,0,0,1,0,0,0,0,1],[0,0,1,3,0,0,0,28,28,0,0,0,0,28,0,0] >;

C2×C72⋊C4 in GAP, Magma, Sage, TeX

C_2\times C_7^2\rtimes C_4
% in TeX

G:=Group("C2xC7^2:C4");
// GroupNames label

G:=SmallGroup(392,40);
// by ID

G=gap.SmallGroup(392,40);
# by ID

G:=PCGroup([5,-2,-2,-2,-7,7,20,1763,253,5004,2114]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^7=c^7=d^4=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=b^3*c^-1,d*c*d^-1=b^3*c^4>;
// generators/relations

Export

Subgroup lattice of C2×C72⋊C4 in TeX

׿
×
𝔽