direct product, metabelian, soluble, monomial, A-group
Aliases: C2×C72⋊C4, (C7×C14)⋊C4, C7⋊D7⋊2C4, C72⋊1(C2×C4), C7⋊D7.3C22, (C2×C7⋊D7).2C2, SmallGroup(392,40)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C72 — C7⋊D7 — C72⋊C4 — C2×C72⋊C4 |
C72 — C2×C72⋊C4 |
Generators and relations for C2×C72⋊C4
G = < a,b,c,d | a2=b7=c7=d4=1, ab=ba, ac=ca, ad=da, bc=cb, dbd-1=b3c-1, dcd-1=b3c4 >
(1 8)(2 10)(3 11)(4 12)(5 13)(6 14)(7 9)(15 28)(16 22)(17 23)(18 24)(19 25)(20 26)(21 27)
(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)
(1 4 7 5 10 6 3)(2 14 11 8 12 9 13)(15 18 21 17 20 16 19)(22 25 28 24 27 23 26)
(1 28 7 26)(2 18 14 17)(3 22 5 25)(4 27)(6 23 10 24)(8 15 9 20)(11 16 13 19)(12 21)
G:=sub<Sym(28)| (1,8)(2,10)(3,11)(4,12)(5,13)(6,14)(7,9)(15,28)(16,22)(17,23)(18,24)(19,25)(20,26)(21,27), (15,16,17,18,19,20,21)(22,23,24,25,26,27,28), (1,4,7,5,10,6,3)(2,14,11,8,12,9,13)(15,18,21,17,20,16,19)(22,25,28,24,27,23,26), (1,28,7,26)(2,18,14,17)(3,22,5,25)(4,27)(6,23,10,24)(8,15,9,20)(11,16,13,19)(12,21)>;
G:=Group( (1,8)(2,10)(3,11)(4,12)(5,13)(6,14)(7,9)(15,28)(16,22)(17,23)(18,24)(19,25)(20,26)(21,27), (15,16,17,18,19,20,21)(22,23,24,25,26,27,28), (1,4,7,5,10,6,3)(2,14,11,8,12,9,13)(15,18,21,17,20,16,19)(22,25,28,24,27,23,26), (1,28,7,26)(2,18,14,17)(3,22,5,25)(4,27)(6,23,10,24)(8,15,9,20)(11,16,13,19)(12,21) );
G=PermutationGroup([[(1,8),(2,10),(3,11),(4,12),(5,13),(6,14),(7,9),(15,28),(16,22),(17,23),(18,24),(19,25),(20,26),(21,27)], [(15,16,17,18,19,20,21),(22,23,24,25,26,27,28)], [(1,4,7,5,10,6,3),(2,14,11,8,12,9,13),(15,18,21,17,20,16,19),(22,25,28,24,27,23,26)], [(1,28,7,26),(2,18,14,17),(3,22,5,25),(4,27),(6,23,10,24),(8,15,9,20),(11,16,13,19),(12,21)]])
G:=TransitiveGroup(28,48);
(1 8)(2 9)(3 10)(4 11)(5 12)(6 13)(7 14)(15 28)(16 22)(17 23)(18 24)(19 25)(20 26)(21 27)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)
(1 18 8 24)(2 15 14 27)(3 19 13 23)(4 16 12 26)(5 20 11 22)(6 17 10 25)(7 21 9 28)
G:=sub<Sym(28)| (1,8)(2,9)(3,10)(4,11)(5,12)(6,13)(7,14)(15,28)(16,22)(17,23)(18,24)(19,25)(20,26)(21,27), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14), (1,18,8,24)(2,15,14,27)(3,19,13,23)(4,16,12,26)(5,20,11,22)(6,17,10,25)(7,21,9,28)>;
G:=Group( (1,8)(2,9)(3,10)(4,11)(5,12)(6,13)(7,14)(15,28)(16,22)(17,23)(18,24)(19,25)(20,26)(21,27), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14), (1,18,8,24)(2,15,14,27)(3,19,13,23)(4,16,12,26)(5,20,11,22)(6,17,10,25)(7,21,9,28) );
G=PermutationGroup([[(1,8),(2,9),(3,10),(4,11),(5,12),(6,13),(7,14),(15,28),(16,22),(17,23),(18,24),(19,25),(20,26),(21,27)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14)], [(1,18,8,24),(2,15,14,27),(3,19,13,23),(4,16,12,26),(5,20,11,22),(6,17,10,25),(7,21,9,28)]])
G:=TransitiveGroup(28,49);
32 conjugacy classes
class | 1 | 2A | 2B | 2C | 4A | 4B | 4C | 4D | 7A | ··· | 7L | 14A | ··· | 14L |
order | 1 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 7 | ··· | 7 | 14 | ··· | 14 |
size | 1 | 1 | 49 | 49 | 49 | 49 | 49 | 49 | 4 | ··· | 4 | 4 | ··· | 4 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 4 | 4 |
type | + | + | + | + | + | ||
image | C1 | C2 | C2 | C4 | C4 | C72⋊C4 | C2×C72⋊C4 |
kernel | C2×C72⋊C4 | C72⋊C4 | C2×C7⋊D7 | C7⋊D7 | C7×C14 | C2 | C1 |
# reps | 1 | 2 | 1 | 2 | 2 | 12 | 12 |
Matrix representation of C2×C72⋊C4 ►in GL4(𝔽29) generated by
28 | 0 | 0 | 0 |
0 | 28 | 0 | 0 |
0 | 0 | 28 | 0 |
0 | 0 | 0 | 28 |
0 | 1 | 0 | 0 |
28 | 3 | 0 | 0 |
0 | 0 | 8 | 26 |
0 | 0 | 3 | 28 |
0 | 1 | 0 | 0 |
28 | 3 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 28 | 0 |
0 | 0 | 0 | 28 |
1 | 0 | 0 | 0 |
3 | 28 | 0 | 0 |
G:=sub<GL(4,GF(29))| [28,0,0,0,0,28,0,0,0,0,28,0,0,0,0,28],[0,28,0,0,1,3,0,0,0,0,8,3,0,0,26,28],[0,28,0,0,1,3,0,0,0,0,1,0,0,0,0,1],[0,0,1,3,0,0,0,28,28,0,0,0,0,28,0,0] >;
C2×C72⋊C4 in GAP, Magma, Sage, TeX
C_2\times C_7^2\rtimes C_4
% in TeX
G:=Group("C2xC7^2:C4");
// GroupNames label
G:=SmallGroup(392,40);
// by ID
G=gap.SmallGroup(392,40);
# by ID
G:=PCGroup([5,-2,-2,-2,-7,7,20,1763,253,5004,2114]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^7=c^7=d^4=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=b^3*c^-1,d*c*d^-1=b^3*c^4>;
// generators/relations
Export